Math 821 Lecture Notes

Ross Churchley March 14 (Happy Pi Day!)

Jacobi triple product formula

Proposition 1.
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Proof. It suffices to show
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The left-hand side consists of an infinite product counting partitions with
even parts, multiplied by a sum generating integers as sides of squares. The
product on the right-hand side counts partitions with odd and distinct parts
in two ways: in the first bracket, y counts the numbers of parts, while y~
takes the place of y in the second bracket.

By the next homework, partitions with odd and distinct parts are in bijec-
tion with self-conjugate partitions' in such a way that the number of parts
in the partition with odd distinct parts maps to the number d(A) of boxes
on the diagonal? in the self-conjugate partition. With this bijection, our goal
becomes the following.

Let P, be the combinatorial class of partitions with even parts and S be
the combinatorial class of self-conjugate partitions. We will be done if we
construct a bijection P, x Z — S x S which preserves the powers of x and
y in equation (1): i.e. if (u, h) — (A1, A2),

(Ml +[A2] = [p] + 42
d(A1) — d(Az) = h.

Take (u,h) € Pe x Z. Firstsay h > 0. Since y has all even parts, let
o be the partition with each part half the corresponding partin pr. Now put
an h x h square with the top left corner at (0, 0), with the Ferrers diagram
of p with left corner at (0, —h) and the Ferrers diagram of g with the top
left corner at (h, 0). In general, the result is not quite a Ferrers diagram (see
Figure 1). However, we can derive two self-conjugate Ferrers diagrams from
it as follows.

Let & be the partition whose Ferrers diagram consists of the h x h square,
the boxes of p’s diagram which lie strictly below the diagonaly = —x, and
the boxes of p which lie on or above the diagonal. Let by taking the boxes
in this diagram that lie below the line y = —h and to the right of x = h.

Our bijection Pe x Z — S x S will have (u,h) — (a,8) whenh > 0.
When h < 0, we perform the same construction with |h| in place of h and
have (yu,h) — (B, a).

'a self-conjugate partition is one which is
equal to its conjugate

2 by the diagonal we mean the liney = —x,
assuming the top left corner of the Ferrers
diagram s at (0,0)

(_h’ 0)

Figure 1: The not-quite-Ferrers-diagram
used in the construction of «



Let’s check a and B are self-conjugate. Write &« = (as,47,...,) and B =
(B1, B2, .-, ). From the diagram, we have
h+ pi i<h
o=
I min{i, p;_p} + max{0,0; — (i—h)} otherwise
but since conjugating the double diagram leaves it invariant, we have the
same formula for &;. A similar argument shows that

Bi = min{p; — h, pisn} = Bi.

Count the number of boxes in the double-diagram in Figure 1, double-
counting the boxes where p and p overlap. On the one hand, this is h* +
2|p| = h? + |u|. On the other hand, since « and B overlap in the same boxes
as p and g, thisis |a| + |B|. So

] + B[ = [h]* + [ul.

We also have d(a) — d(B) = |h|, as the boxes of § on the diagonaly = —x
are precisely the boxes of a on the diagonal to the right of x = h.
Now let’s check this is a bijection by giving the inverse map. Take (A1, A;) €

S x S. Take the Ferrers diagram of Ay and A, and line them up so the square
on the diagonal for each coincide. Let h = d(Aq) — d(A;). If h > 0, let
a = Ajand B = Ay, otherwise leta = A; and B = A4. Let p be the partition
with Ferrers diagram built of the parts of those squares of a below y = —|h|
and strictly below y = —x along with those squares of § which are on or
above y = —x, where the top corner of « is at (0,0). This construction is
inverse to the original and hence we have a bijection. O

Symmetric functions

Letx = (x1,X2,...) be a countable sequence of variables.

Definition. A monomial x* in the variables x indexed by & = (a5, 43, ...),
aj € Z>oisaproduct [T, x,‘.x" where only finitely many «; are nonzero.

Definition. The degree of a monomial x* is }_°, «;.

Definition. Let R(x) be the ring of formal power series ), c,x* of bounded
degree—i.e. foreachelement), c,x* € R(x),thereisadsuchthatdeg(x*) >
dimpliesc, = 0.

Some examples:

X1 +Xx2+Xx3+--- € R(
x2xy 4 x8° € R(

XN+X5 x5+ Z R(

I>x< IXx
~— —

I>x<
~—
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Definition. The permutation group S, acts on R(x) by acting on the first n
variables.

Definition. The ring of symmetric functionsinxis A(x) = {f € R(x) : fis
invariant under the action of S, for all n}.

Definition. Under this action we can view S,_; C S, and so let S =

U21 Sn
Examples:
x4 xgxa € A
the other above examples & N(x)
XXy +X5X1 + -+ Xz + - € A(x)

What can we say about the exponents appearing? The only information
after permuting is the partition of the powers which appear.

Definition. Given a partition A = (A4,..., Ay) definem, € A(x) as follows:
let S(A) = {o(A, A2, .., A4, 0,0,...,0) : 0 € Sp,n > k}. (This is really
just the Seo orbit of A). Then m)y = )} ,c5(1) x". These are called monomial
symmetric functions.

Example 1. Let’s work out m, for some partitions A of 4:
Mgy =X +X3 +x5 + -
M3y = XX +X0G + -
Proposition 2. The m, form a vector space basis for A(x).

Proof. Given f € A(x), f is invariant under S so the powers appear in f
consist of a disjoint union of some orbits under this action. Each orbit O
corresponds to a partition. Finally, f is of bounded degree, so the partitions
appearing are of bounded size, so there are finitely many of them. O

Do we really need infinitely many variables? No, but you need enough—
three variables is enough for m) when A is a partition of 3:

M) N xax3) = X1X2X3,

but since
M) AGa) =0
two variables are not enough.

Formally, for alln > 1thereis an algebraic homomorphism ¢, : A(x) —
A(x1,X2, ..., X, mapping x; — x; when i < n and mapping all other x; to
0. Futhermore, A(x) is a graded vector space graded by degree and so is
A(X1, e s Xn).



Proposition 3. ¢, : A(x; — (A(x1,...,Xn)); is a vector space isomorphism
fori < n.

Proof. A basis for A(x); is {m, : |A| = i} so we just need to check that
their images under ¢ form a basis for A(x, ..., x,);. A partition A of i has at
most i parts, so there is at least one monomial in m, using at most the first i
variables of x. Since i < nthis gives¢(m, ) # 0. Further more, no monomial
appears in more than one m,, so there can be no cancellation. So the image
of any linear combination of {m, : |A| = i} is also nonzero, so ¢, is one-to-
one.

Since the m) span A(x);, so do the ¢, (m, ). Hence they form a basis. [

Note that the proposition shows that any identity true in A(xy, ..., xp) for
allnis also truein A: since any identity is finite, it must appear at some finite
level of the grading.
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