Math 821 Lecture Notes

Ross Churchley March 14 (Happy Pi Day!)

Jacobi triple product formula

Proposition 1.

$$\sum_{h=-\infty}^{\infty} x^{h^2} y^h = \prod_{i=1}^{\infty} (1 - x^{2i-1} y) (1 + x^{2i-1} y^{-1}) (1 - x^{2i})$$

Proof. It suffices to show

$$\left(\prod_{i=1}^{\infty} \frac{1}{1-x^{2i}}\right) \sum_{h=-\infty}^{\infty} x^{h^2} y^h = \prod_{i=1}^{\infty} (1-x^{2i-1}y)(1+x^{2i-1}y^{-1}).$$
(1)

The left-hand side consists of an infinite product counting partitions with even parts, multiplied by a sum generating integers as sides of squares. The product on the right-hand side counts partitions with odd and distinct parts in two ways: in the first bracket, *y* counts the numbers of parts, while y^{-1} takes the place of *y* in the second bracket.

By the next homework, partitions with odd and distinct parts are in bijection with self-conjugate partitions¹ in such a way that the number of parts in the partition with odd distinct parts maps to the number $d(\lambda)$ of boxes on the diagonal² in the self-conjugate partition. With this bijection, our goal becomes the following.

Let \mathcal{P}_e be the combinatorial class of partitions with even parts and \mathcal{S} be the combinatorial class of self-conjugate partitions. We will be done if we construct a bijection $\mathcal{P}_e \times \mathbb{Z} \to \mathcal{S} \times \mathcal{S}$ which preserves the powers of x and y in equation (1): i.e. if $(\mu, h) \mapsto (\lambda_1, \lambda_2)$,

$$\begin{aligned} |\lambda_1| + |\lambda_2| &= |\mu| + h^2\\ d(\lambda_1) - d(\lambda_2) &= h. \end{aligned}$$

Take $(\mu, h) \in \mathcal{P}_e \times \mathbb{Z}$. First say $h \ge 0$. Since μ has all even parts, let ρ be the partition with each part half the corresponding part in μ . Now put an $h \times h$ square with the top left corner at (0, 0), with the Ferrers diagram of ρ with left corner at (0, -h) and the Ferrers diagram of $\tilde{\rho}$ with the top left corner at (h, 0). In general, the result is not quite a Ferrers diagram (see Figure 1). However, we can derive two self-conjugate Ferrers diagrams from it as follows.

Let α be the partition whose Ferrers diagram consists of the $h \times h$ square, the boxes of ρ 's diagram which lie strictly below the diagonal y = -x, and the boxes of $\tilde{\rho}$ which lie on or above the diagonal. Let β by taking the boxes in this diagram that lie below the line y = -h and to the right of x = h.

Our bijection $\mathcal{P}_e \times \mathbb{Z} \to \mathcal{S} \times \mathcal{S}$ will have $(\mu, h) \mapsto (\alpha, \beta)$ when $h \ge 0$. When h < 0, we perform the same construction with |h| in place of h and have $(\mu, h) \mapsto (\beta, \alpha)$. ¹ a *self-conjugate partition* is one which is equal to its conjugate

² by the *diagonal* we mean the line y = -x, assuming the top left corner of the Ferrers diagram is at (0, 0)

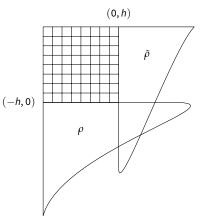


Figure 1: The not-quite-Ferrers-diagram used in the construction of α

Let's check α and β are self-conjugate. Write $\alpha = (\alpha_1, \alpha_2, ...,)$ and $\beta = (\beta_1, \beta_2, ...,)$. From the diagram, we have

$$\alpha_i = \begin{cases} h + \tilde{\rho}_i & i \le h \\ \min\{i, \rho_{i-h}\} + \max\{0, \tilde{\rho}_i - (i-h)\} & \text{otherwise} \end{cases}$$

but since conjugating the double diagram leaves it invariant, we have the same formula for $\tilde{\alpha}_i$. A similar argument shows that

$$\beta_i = \min\{\rho_i - h, \tilde{\rho}_{i+h}\} = \tilde{\beta}_i.$$

Count the number of boxes in the double-diagram in Figure 1, doublecounting the boxes where ρ and $\tilde{\rho}$ overlap. On the one hand, this is $h^2 + 2|\rho| = h^2 + |\mu|$. On the other hand, since α and β overlap in the same boxes as ρ and $\tilde{\rho}$, this is $|\alpha| + |\beta|$. So

$$|\alpha| + |\beta| = |h|^2 + |\mu|.$$

We also have $d(\alpha) - d(\beta) = |h|$, as the boxes of β on the diagonal y = -x are precisely the boxes of α on the diagonal to the right of x = h.

Now let's check this is a bijection by giving the inverse map. Take $(\lambda_1, \lambda_2) \in S \times S$. Take the Ferrers diagram of λ_1 and λ_2 and line them up so the square on the diagonal for each coincide. Let $h = d(\lambda_1) - d(\lambda_2)$. If $h \ge 0$, let $\alpha = \lambda_1$ and $\beta = \lambda_2$, otherwise let $\alpha = \lambda_2$ and $\beta = \lambda_1$. Let ρ be the partition with Ferrers diagram built of the parts of those squares of α below y = -|h| and strictly below y = -x along with those squares of β which are on or above y = -x, where the top corner of α is at (0, 0). This construction is inverse to the original and hence we have a bijection.

Symmetric functions

Let $\underline{x} = (x_1, x_2, ...)$ be a countable sequence of variables.

Definition. A monomial \underline{x}^{α} in the variables \underline{x} indexed by $\alpha = (\alpha_1, \alpha_2, ...)$, $\alpha_i \in \mathbb{Z}_{\geq 0}$ is a product $\prod_{i=1}^{\infty} x_i^{\alpha_i}$ where only finitely many α_i are nonzero.

Definition. The *degree* of a monomial \underline{x}^{α} is $\sum_{i=1}^{\infty} \alpha_i$.

Definition. Let $R(\underline{x})$ be the ring of formal power series $\sum_{\alpha} c_{\alpha} \underline{x}^{\alpha}$ of bounded degree—i.e. for each element $\sum_{\alpha} c_{\alpha} \underline{x}^{\alpha} \in R(\underline{x})$, there is a *d* such that $deg(\underline{x}^{\alpha}) > d$ implies $c_{\alpha} = 0$.

Some examples:

$x_1+x_2+x_3+\cdots$	$\in R(\underline{x})$
$x_1^2 x_2 + x_3^{85}$	$\in R(\underline{x})$
$x_1+x_2^2+x_3^3+\cdots$	$ ot\in R(\underline{x}) $

Definition. The permutation group S_n acts on $R(\underline{x})$ by acting on the first n variables.

Definition. The ring of symmetric functions in \underline{x} is $\Lambda(\underline{x}) = \{f \in R(\underline{x}) : f \text{ is invariant under the action of } S_n \text{ for all } n\}.$

Definition. Under this action we can view $S_{n-1} \subseteq S_n$ and so let $S_{\infty} = \bigcup_{i>1} S_n$

Examples:

$x_1 + x_2 + x_3 + \cdots$	$\in \Lambda(\underline{x})$
the other above examples	$\not\in \Lambda(\underline{x})$
$x_1^2 x_2 + x_2^2 x_1 + \dots + x_{2013}^2 x_1 + \dots$	$\in \Lambda(\underline{x})$

What can we say about the exponents appearing? The only information after permuting is the partition of the powers which appear.

Definition. Given a partition $\lambda = (\lambda_1, ..., \lambda_k)$ define $m_{\lambda} \in \Lambda(\underline{x})$ as follows: let $S(\lambda) = \{\sigma(\lambda_1, \lambda_2, ..., \lambda_k, 0, 0, ..., 0) : \sigma \in S_n, n \ge k\}$. (This is really just the S_{∞} orbit of λ). Then $m_{\lambda} = \sum_{\alpha \in S(\lambda)} \underline{x}^{\alpha}$. These are called *monomial* symmetric functions.

Example 1. Let's work out m_{λ} for some partitions λ of 4:

$$m_{(4)} = x_1^4 + x_2^4 + x_3^4 + \cdots$$
$$m_{(3,1)} = x_1^3 x_2 + x_1 x_3^3 + \cdots$$

Proposition 2. The m_{λ} form a vector space basis for $\Lambda(\underline{x})$.

Proof. Given $f \in \Lambda(\underline{x})$, f is invariant under S_{∞} so the powers appear in f consist of a disjoint union of some orbits under this action. Each orbit O corresponds to a partition. Finally, f is of bounded degree, so the partitions appearing are of bounded size, so there are finitely many of them. \Box

Do we really need infinitely many variables? No, but you need enough—three variables is enough for m_{λ} when λ is a partition of 3:

$$m_{(1,1,1)}|_{\Lambda(x_1,x_2,x_3)} = x_1x_2x_3,$$

but since

$$m_{(1,1,1)}|_{\Lambda(x_1,x_2)}=0$$

two variables are not enough.

Formally, for all $n \ge 1$ there is an algebraic homomorphism $\phi_n : \Lambda(\underline{x}) \to \Lambda(x_1, x_2, ..., x_n \text{ mapping } x_i \mapsto x_i \text{ when } i \le n \text{ and mapping all other } x_i \text{ to } 0$. Futhermore, $\Lambda(\underline{x})$ is a graded vector space graded by degree and so is $\Lambda(x_1, ..., x_n)$.

Proposition 3. $\phi_n : \Lambda(\underline{x}_i \to (\Lambda(x_1, ..., x_n))_i \text{ is a vector space isomorphism for } i \leq n.$

Proof. A basis for $\Lambda(\underline{x})_i$ is $\{m_{\lambda} : |\lambda| = i\}$ so we just need to check that their images under ϕ form a basis for $\Lambda(x_1, ..., x_n)_i$. A partition λ of i has at most i parts, so there is at least one monomial in m_{λ} using at most the first i variables of \underline{x} . Since $i \leq n$ this gives $\phi(m_{\lambda}) \neq 0$. Further more, no monomial appears in more than one m_{λ} so there can be no cancellation. So the image of any linear combination of $\{m_{\lambda} : |\lambda| = i\}$ is also nonzero, so ϕ_n is one-to-one.

Since the m_{λ} span $\Lambda(\underline{x})_i$, so do the $\phi_n(m_{\lambda})$. Hence they form a basis. \Box

Note that the proposition shows that any identity true in $\Lambda(x_1, ..., x_n)$ for all *n* is also true in Λ : since any identity is finite, it must appear at some finite level of the grading.

References

Victor Reiner, Hopfalgebras in combinatorics lecture notes (Chapter 2). http: //www.math.umn.edu/~reiner/Classes/HopfComb.pdf